2020
DOI: 10.1364/oe.393948
|View full text |Cite
|
Sign up to set email alerts
|

Phase-matching condition for THz wave generation via difference frequency generation using InxGa1-xSe mixed crystals

Abstract: Terahertz (THz) waves at 9.7, 10.1 and 10.6 THz were generated via difference frequency generation in high-quality InxG1-xaSe mixed crystals with a relatively high indium compositions (x = 0.040, 0.048, 0.074) grown from an indium flux. The phase-matching angle for THz wave generation was measured for each indium content. As a result, it is confirmed that the incident angle of the excitation light satisfying the phase-matching condition is shifted to a higher angle with an increase in the indium content.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 26 publications
0
0
0
1
Order By: Relevance
“…They have an extremely asymmetric layered crystal structure, which leads to relatively high second order nonlinear optical coefficients. Therefore, THz waves can be efficiently generated in GaSe and In x Ga 1-x Se crystals via DFG [57][58][59]. In birefringent materials, since the different wave vectors can be either o-or e-polarized, phase-matching can sometimes be achieved by choosing different polarization directions for collinear interactions.…”
Section: Quasi-continuous Thz Generationmentioning
confidence: 99%
“…They have an extremely asymmetric layered crystal structure, which leads to relatively high second order nonlinear optical coefficients. Therefore, THz waves can be efficiently generated in GaSe and In x Ga 1-x Se crystals via DFG [57][58][59]. In birefringent materials, since the different wave vectors can be either o-or e-polarized, phase-matching can sometimes be achieved by choosing different polarization directions for collinear interactions.…”
Section: Quasi-continuous Thz Generationmentioning
confidence: 99%
“…
、光化学电极 [3] 和太赫兹辐射 [4] 等新兴领域中。GaSe 晶体作为典型的 III-VI 族 层状半导体 [5] ,具有高的非线性系数(d 22 =54 pm/V) ,宽的透光范围(0.62-20 µm) ,低的吸收系数(α<1 cm -1 )和大的双折射率(∆n=0.34)等优异的光学性 质 [6] ,使其在 THz 辐射源 [7][8][9] 、光电探测器 [10] 、气体传感器 [11] 和高效太阳能电 池 [12] 等领域具有广阔的应用前景。 然而,由于弱的层间范德华力作用,本征 GaSe 晶体硬度较低,且存在大 量的结构缺陷 [13] ,加剧了对太赫兹(terahertz, THz)波的吸收 [14] ,限制了其在 THz 波产生和传输中的应用。通过掺杂不仅可以增强 GaSe 晶体的机械性能,而 且能够改善其结构缺陷,提高光学性质 [15] 。Shin 等人 [14] 制备了不同 Te 掺杂浓 度(0.01 mass%-2.07 mass%)的 GaSe 晶体,发现 Te 掺杂 GaSe 晶体的硬度比 本征 GaSe 晶体提高 25%,且 Te 掺杂 0.07 mass% GaSe 晶体利用光整流法辐射 的 THz 效率比本征 GaSe 晶体增强 20%。Huang 等人 [16] 研究发现 Al 掺杂 0.13 mass% GaSe 晶体硬度是本征 GaSe 晶体的 2.6 倍,在 0.83-14 μm 范围内吸收系
…”
unclassified