This paper considers codebook-based precoding for Space Shift Keying (SSK) modulation MIMO system. Codebook-based precoding avoids the necessity for full knowledge of Channel State Information (CSI) at the transmitter and alleviates the complexity of generating a CSI-optimized precoder. The receiver selects the codeword that maximizes the Minimum Euclidean Distance (MED) of the received constellation and feeds back its index to the transmitter. In this paper, we first develop a new accurate closed-form Bit Error Rate (BER) for SSK without precoding. Then, we investigate several phase-rotation codebooks with quantized set of phases and systematic structure. Namely, we investigate the Full-Combination, Walsh-Hadamard, Quasi-Orthogonal Sequences, and Orthogonal Array Testing codebooks. In addition, since the size of the Full-Combination codebook may be large, we develop an iterative search method for fast selection of its best codeword. The proposed codebooks significantly improve the BER performance in Rayleigh and Nakagami fading channels, even at high spatial correlation among transmit antennas and CSI estimation error. Moreover, we show that only four phases {+1, + , −1, − } are sufficient and further phase granularity does yield significant gain. This avoids hardware multiplication during searching the codebook and applying the codeword.