Quantum sensing using non-linear interferometers offers the possibility of bicolour imaging, using light that never interacted with the object of interest, and provides a way to achieve phase supersensitivity, i.e. a Heisenberg-type scaling of the phase uncertainty. Such a scaling behaviour is extremely susceptible to noise and only arises at specific phases that define the optimal working point of the device. While phase-shifting algorithms are to some degree robust against the deleterious effects induced by noise they extract an image by tuning the interferometer phase over a broad range, implying an operation beyond the working point. In our theoretical study, we investigate both the spontaneous and the high-gain regime of operation of a non-linear interferometer. In fact, in the spontaneous regime using a distillation technique and operating at the working point leads to a qualitatively similar behaviour. In the high-gain regime, however, typical distillation techniques inherently forbid a scaling better than the standard-quantum limit, as a consequence of the photon statistics of squeezed vacuum. In contrast, an operation at the working point still may lead to a sensitivity below shot noise, even in the presence of noise. Therefore, this procedure opens the perspective of bicolour imaging with a better than shot-noise phase uncertainty by working in the vicinity of the working point. Our results transfer quantum imaging distillation in a noisy environment to the high-gain regime with the ultimate goal of harnessing its full potential by combining bicolour imaging and phase supersensitivity.