1990
DOI: 10.1103/physrevb.41.6920
|View full text |Cite
|
Sign up to set email alerts
|

Phase separation in at-Jmodel

Abstract: We study a simple extension of the Heisenberg model that is abstracted from the large-U limit of the Hubbard Hamiltonian and includes charge fluctuations. An attempt is made to elucidate some basic features of the T=0 phase diagram within a suitable 1/N expansion. We find that the ferromagnetic boundary dictated by a naive application of the Nagaoka theorem is actually incorrect because of an instability induced by phase separation. We derive what we believe to be the correct ferromagnetic boundary for suffici… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

3
42
0

Year Published

1994
1994
2008
2008

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 114 publications
(45 citation statements)
references
References 16 publications
3
42
0
Order By: Relevance
“…This result implies instability to a spiral state, while the system can further lower its energy by phase separating. 7,40 Due to the variational nature of our calculation, it is guaranteed that, if the magnon energy becomes negative for J = J c (n), the ground state of the Hamiltonian H for all J < J c (n) is not the half metallic state |F . The phase diagrams of Fig.…”
Section: Numerical Resultsmentioning
confidence: 99%
“…This result implies instability to a spiral state, while the system can further lower its energy by phase separating. 7,40 Due to the variational nature of our calculation, it is guaranteed that, if the magnon energy becomes negative for J = J c (n), the ground state of the Hamiltonian H for all J < J c (n) is not the half metallic state |F . The phase diagrams of Fig.…”
Section: Numerical Resultsmentioning
confidence: 99%
“…If the holes were neutral the system would separate into a hole-free antiferromagnetic phase and a hole-rich (magnetically disordered or possibly ferromagnetic) phase, in which the holes are mobile and the cost in exchange energy is less than the gain in kinetic energy. [25][26][27] In practice the holes are charged, but macroscopic phase separation can take place whenever the dopants are mobile, as in oxygen-doped and photo-doped materials. We have reviewed the experimental evidence for this behavior elsewhere.…”
Section: Topological Dopingmentioning
confidence: 99%
“…In the t -J model, it was rapidly realized that at large J It, the model phase separated (Refs. 105,162,163,164, and references therein). As explained before, adding a low mobility hole to the undoped system amounts to removing four antiferromagnetic links, thus increasing the energy of the system.…”
Section: Phase Separationmentioning
confidence: 96%