Understanding and, ultimately, controlling the properties of amorphous materials is one of the key goals of material science. Among the different amorphous structures, a very important role is played by colloidal gels. It has been only recently understood that colloidal gels are the result of the interplay between phase separation and arrest. When short-ranged attractive colloids are quenched into the phase-separating region, density fluctuations are arrested and this results in ramified amorphous space-spanning structures that are capable of sustaining mechanical stress. We present a mechanism of aggregation through arrested demixing in binary colloidal mixtures, which leads to the formation of a yet unexplored class of materials--bigels. This material is obtained by tuning interspecies interactions. Using a computer model, we investigate the phase behavior and the structural properties of these bigels. We show the topological similarities and the geometrical differences between these binary, interpenetrating, arrested structures and their well-known monodisperse counterparts, colloidal gels. Our findings are supported by confocal microscopy experiments performed on mixtures of DNA-coated colloids. The mechanism of bigel formation is a generalization of arrested phase separation and is therefore universal.spinodal decomposition | DNA-coated colloids | programmable interactions | amorphous self-assembly T he properties of a self-assembled material are ultimately controlled by the interactions among its building blocks and by the conditions in which they are prepared. It is by tuning these two properties that different structures can be obtained. Shortranged attractive colloidal systems, for example, can form crystals, two glasses of different origin, or gels. The latter have great technological importance. Colloidal gels find applications in synthetic colloid porous materials (1, 2), functionalization of surfaces and films production (3, 4), ceramics processing (5, 6), protein assemblies (7, 8), food science (9, 10), and soft matter (11, 12). Although they have been known for some time (13,14), it has only recently been understood that the colloidal gels arise as a result of arrested phase separation (15-18).The gels are characterized by a ramified amorphous spacespanning structure that is capable of sustaining mechanical stress. The colloidal density plays a crucial role in the aggregation and therefore in the resulting structure. At low densities, irreversible aggregation leads to fractal gels. At intermediate densities more compact porous structures are observed, whereas a homogeneous glass emerges when the solute occupies more than 50% of the volume (11,10,14,19).It has been proven that when colloidal particles are quenched into the gas-liquid phase separation region, gelation occurs as a consequence of dynamic arrest that interferes with phase separation (15, 18). After the quench, the system is thermodynamically unstable and strong density fluctuations set in, favoring the separation of the fluid into two ...