We propose an algorithm to remove a parabolic wavefront from a convergent or divergent beam in the Wigner function. Using this approach we numerically collimate the beam. This avoids a dense sampling in phase space to describe a convergent wavefront. Thereby we reduce the required computer memory, but maintain computational accuracy and physical effects. Furthermore, we compare two algorithms, shearing and Radon transform, to propagate the Wigner function in free space. We use the fast Fourier transform to accurately perform shearing. However, zero-padding is necessary to circumvent aliasing. We prove that the Radon transform is a more efficient approach for a long propagated distance.