The structures, Curie temperature, dielectric relaxor behaviors, ferroelectricity, ferromagnetism, and magnetocapacitance of the (1 -x)Ba 0.70 Ca 0.30 TiO 3 -xBiFeO 3 [(1 -x)BCT-xBF, x = 0-0.90] solid solutions have been systematically investigated. The ceramics have coexisted tetragonal (T) and orthorhombic (O) phases when x ≤ 0.06, coexisted pseudocubic (PC) and O phases when x = 0.065, coexisted cubic and O phases when 0.07 ≤ x ≤ 0.12, PC phase when 0.21 ≤ x ≤ 0.42, coexisted T and rhombohedral (R) phases when 0.52 ≤ x ≤ 0.70, and R phase when x ≥ 0.75. Significantly, composition-dependent microstructures and Curie temperature are observed, the average grain size increases from 1.9 lm for x = 0, reaches 12.0 lm for x = 0.67, and then decreases to 1.3 lm for x = 0.90. At room temperature, the ceramics with x = 0.42-0.70 show piezoelectric properties and multiferroic behaviors, characterized by the polarization-electric field, polarization current intensityelectric field, and magnetization-magnetic field curves, the composition with x = 0.67 has maximum polarization, remnant polarization, maximum magnetization, and remnant magnetization of 15.0 lC/cm 2 , 9.1 lC/cm 2 , 0.33 emu/g, and 0.14 emu/ g, respectively. In addition, the magnetocapacitance is evidenced by the increased relative dielectric constant with increasing the applied magnetic field (H). With DH = 8 kOe, the composition with x = 0.67 shows the largest values of (e r (H) -e r (0))/e r (0) = 2.96% at room temperature. The structure-property relationship is discussed intensively.