Interferometric synthetic aperture radar (InSAR) has become a key technology for producing high-precision digital surface models (DSMs) and digital orthophoto maps (DOMs) in full time and all weathers. Airborne millimeter-wave InSAR, with large-scale and high-resolution imaging, is characterized by high spatial resolution, flexibility, and immunity to loss-of-correlation. This paper introduces our modeling experiments with airborne dual-antenna, Ka-band InSAR regarding typical topographies of China. Ka-band SAR data were acquired in designated experimental areas in flat (Heyang area in Shaanxi) and mountainous areas (Shibing area in Guizhou and Qionglai area in Sichuan). The key processing of the experimental data for DSMs and DOMs is demonstrated in the paper, especially the proposed robust and efficient phase unwrapping (PU) method for the interferometric data and block adjustment method of strip calibration. The results show that the proposed unwrapping method can provide reliable unwrapped phase results in undulating areas, and the block adjustment can carry out consistent calibration for strips with sparse ground control points (GCPs). The accuracy assessment of the DSM shows that the coordinate root mean square error (RSME) of the obtained DSM is less than 2 m in height, and 2.5 m horizontally, which meets the 1:5000 requirement for topographic mapping in difficult areas.