The current study examined the extent to which pupillary responses (both pretrial baseline and phasic responses) would accurately track lapses of attention as predicted by theories of locus coeruleus norepinephrine (LC-NE) functioning. Participants performed a sustained attention task while pupil responses were continuously recorded. Periodically during the task, participants were presented with thought probes to determine if they were on or off task. The results suggested the pupillary responses accurately distinguished on from off-task states. Importantly, pretrial baseline pupil responses distinguished different types of lapses of attention, with inattentive and mind-wandering states being associated with small pretrial baseline pupil diameters on average and distracted states being associated with larger pretrial baseline pupil diameters on average compared to focused states. These results support the notion that pupil diameter is sensitive to different types of lapses of attention which may be associated with different LC-NE modes.
Keywords Cognitive control . Norephinephrine . AttentionThe ability to focus and sustain attention on task-relevant information is a critically important skill that is needed in a host of everyday activities. Despite the importance of focusing and sustaining attention on goal-relevant information, sometimes the attention system falters, leading to lapses. Understanding these lapses, whereby attention is disengaged from the current task and focused on other external distracting stimuli or internal thoughts (daydreaming), is important for understanding how and when attentional processes falter in both the laboratory and in real-world situations (Reason, 1984). For example, the ability to focus attention is needed in a host of activities where any lapses of attention could result in unwanted outcomes, such driving accidents, lower academic performance, and failures to spot weapons during baggage screening (Reason, 1990;Unsworth, McMillan, Brewer, & Spillers, 2012). Gaining a better understanding of fluctuations in attention is important for understanding the attentional system more broadly and for predicting when and for whom attention failures are most likely.