Fungicidal activity of experimental tebuconazole (TEB) formulations was investigated in laboratory soil ecosystems in wheat plant communities infected by Fusarium moniliforme. TEB was embedded in the matrix of poly-3-hydroxybutyrate, shaped as films and microgranules. These formulations were buried in the soil with wheat plants, and their efficacy was compared with that of commercial formulation Raxil and with the effect of pre-sowing treatment of seeds. In the experiment with the initially infected seeds and a relatively low level of natural soil infection caused by Fusarium fungi, the effects of the experimental P(3HB)/TEB formulations and Raxil were comparable. However, when the level of soil infection was increased by adding F. moniliforme spores, P(3HB)/TEB granules and films reduced the total counts of fungi and the abundance of F. moniliforme more effectively than Raxil. Seed treatment or soil treatment with Raxil solution showed an increase in the percentage of rot-damaged roots in the later stages of the experiment. In the early stage (between days 10 and 20), the percentage of rot-damaged roots in the soil with TEB embedded in the slowly degraded P(3HB) matrix was similar to that in the soil with Raxil. However, the efficacy of P(3HB)/TEB formulations lasted longer, and in later stages (between days 20 and 30), the percentage of rot-damaged roots in that group did not grow. In experiments with different TEB formulations and, hence, different fungicidal activities, the increase in plant biomass was 15-17 to 40-60% higher than in the groups where TEB was applied by using conventional techniques.