Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Global concern about plastic pollution is forcing new policies and modifications of human consumption as well as promoting new research lines aiming at the replacement of non-degradable plastics with other polymers more environmentally friendly. Addressing food waste and promoting circular economy strategies, among other approaches, are crucial in reducing environmental impacts and fostering sustainability in several sectors like the agri-food industry. The European Union’s Circular Economy Action Plan is a significant initiative in this direction. Biotechnological processes, especially the valorisation of agri-food waste to produce highly marketed biomolecules like poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) using microorganisms as cellular factories, offer promising avenues for achieving these goals. PHBV is a biodegradable polymer firstly characterised as an isolated biopolymer from bacterial biomass. This biopolymer shows interesting physicochemical properties making possible immense potential in various applications due to its biocompatibility and sustainability, thus revealing it as a good candidate to replace plastics produced by chemical synthesis from petroleum (which are highly recalcitrant and consequently pollutants). This review critically analyses the PHBV synthesis and end-of-life scenarios from their synthesis using chemical and biological pathways, through the forms of biotechnological operation and production, to the forms described until the moment of recycling.
Global concern about plastic pollution is forcing new policies and modifications of human consumption as well as promoting new research lines aiming at the replacement of non-degradable plastics with other polymers more environmentally friendly. Addressing food waste and promoting circular economy strategies, among other approaches, are crucial in reducing environmental impacts and fostering sustainability in several sectors like the agri-food industry. The European Union’s Circular Economy Action Plan is a significant initiative in this direction. Biotechnological processes, especially the valorisation of agri-food waste to produce highly marketed biomolecules like poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) using microorganisms as cellular factories, offer promising avenues for achieving these goals. PHBV is a biodegradable polymer firstly characterised as an isolated biopolymer from bacterial biomass. This biopolymer shows interesting physicochemical properties making possible immense potential in various applications due to its biocompatibility and sustainability, thus revealing it as a good candidate to replace plastics produced by chemical synthesis from petroleum (which are highly recalcitrant and consequently pollutants). This review critically analyses the PHBV synthesis and end-of-life scenarios from their synthesis using chemical and biological pathways, through the forms of biotechnological operation and production, to the forms described until the moment of recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.