The aging process contributes to the sensory evolution of alcoholic beverages, producing changes in the color and flavor of the final product. Traditionally, aging has occurred by storing beverages in wooden barrels for several months or years. To meet the demand for aged beverages, there is a need for large storage areas, a large number of wooden barrels, and, consequently, large volumes of stored product. Evaporation losses can also occur. In addition to the reactions of the beverage itself, there is also a transfer of wood compounds to the drink, which is later modified by successive oxidation reactions. This study addresses the alternative methods for accelerating the aging stage of beverages. These include the use of wood fragments, ultrasound, micro-oxygenation, pulsed electric field, high hydrostatic pressure, and microwave and gamma irradiation. These methods can be applied to optimize the process of extracting wood compounds, promote free radical formation, reduce oxidation reaction time, and accelerate yeast autolysis time. This study provides examples of some of the aforementioned methods. These technologies add value to the aging process, since they contribute to the reduction of production costs and, consequently, can increase commercial competitiveness.