A priority for the field vegetable grower is to be able to schedule a regular supply of product throughout the growing season. This requires a predictive framework, based on the identification of key developmental events of the crop, and an understanding of how genotypic and environmental factors interact to determine plant development. Four globe artichoke (Cynara cardunculus var. scolymus) cultivars, representing the existing phenological range, were grown in a field experiment, and a range of environmental conditions was imposed by varying both the timing of the first irrigation (which determines the initiation of regrowth) and by repeating the experiment across two locations and 2 years. The timing of the appearance of the main stem capitulum was sensitive to both the growing environment and the cultivar. These differences persisted till flowering and were correlated with final leaf number. As the plant developed, the phyllochron decreased, resulting in three values of phyllochron, each of which was responsive to genotype, and hardly to environment. The timing of the first change in phyllochron was associated with the final leaf number and the appearance of the capitulum. For all the cultivars, the rate of development fell and the final leaf number increased as the length of the photoperiod increased. The later flowering cultivars shared a similar vernalisation requirement, but 'Spinoso sardo' did not require a cold period to flower. Leaf length reached a peak before the beginning of stem elongation, and maximum leaf length was correlated with final leaf number. The sensitiveness of the phyllochron to the genotype, and of the number of leaves and the timing of the appearance of the capitulum to both genotype and environment makes them suitable as variables in developmental models. The importance of the final number of leaves is not only because of its phenological significance, but also because of its effect on the ability of the canopy to intercept radiation.
Key phenological events in globe artichoke developmentA. Virdis et al.