Proteins detectable in peripheral blood may influence COVID-19 susceptibility or severity. However, understanding which circulating proteins are etiologically involved is difficult because their levels may be influenced by COVID-19 itself and also subject to confounding factors. To identify circulating proteins influencing COVID-19 susceptibility and severity we undertook a large-scale two-sample Mendelian randomization (MR) study, since this study design can rapidly scan hundreds of circulating proteins and reduces bias due to confounding and reverse causation. We began by identifying the genetic determinants of 955 circulating proteins in up to 10,708 SARS-CoV-2 uninfected individuals, retaining only single nucleotide polymorphisms near the gene encoded by the circulating protein. We then undertook an MR study to estimate the effect of these proteins on COVID-19 susceptibility and severity using the Host Genetics Initiative. We found that a standard deviation increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (N = 2,972 cases / 284,472 controls; OR = 0.48, P = 7x10-8), COVID-19 hospitalization (N = 6,492 / 1,012,809; OR = 0.60, P = 2x10-7) and COVID-19 susceptibility (N = 17,607 / 1,345,334; OR = 0.81, P = 6x10-5). Results were consistent despite multiple sensitivity analyses probing MR assumptions. OAS1 is an interferon-stimulated gene that promotes viral RNA degradation. Other potentially implicated proteins included IL10RB. Available medicines, such as interferon-beta-1b, increase OAS1 and could be explored for their effect on COVID-19 susceptibility and severity.