2018
DOI: 10.1134/s2070048218040117
|View full text |Cite
|
Sign up to set email alerts
|

Phenomenological Computational Model for the Development of a Population Outbreak of Insects with Its Bifurcational Completion

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 12 publications
0
2
0
1
Order By: Relevance
“…Consequently, these parameters influence the evolution and inheritance of species. In the current scientific landscape, it is notable that a substantial number of researchers have adopted the logistic model as a valuable tool for forecasting cumulative cases of infectious diseases, such as COVID-19, and for modeling the dynamics of insect outbreaks [16,17]. This mathematical model, originally introduced by Pierre François Verhulst and widely applied in epidemiology and population ecology, continues to be a favored choice for addressing these crucial scientific challenges.…”
Section: Growth Modelsmentioning
confidence: 99%
“…Consequently, these parameters influence the evolution and inheritance of species. In the current scientific landscape, it is notable that a substantial number of researchers have adopted the logistic model as a valuable tool for forecasting cumulative cases of infectious diseases, such as COVID-19, and for modeling the dynamics of insect outbreaks [16,17]. This mathematical model, originally introduced by Pierre François Verhulst and widely applied in epidemiology and population ecology, continues to be a favored choice for addressing these crucial scientific challenges.…”
Section: Growth Modelsmentioning
confidence: 99%
“…Ограничивающий показатель воздействия J, N(t) < J, ∀t, 0 < N(0) < J, в уравнении ( 14) зеркально симметричен по смыслу критическому порогу L из уравнения А. Д. Базыкина как нижней грани для существования локальной популяции 0 < N(0) < L, lim t→∞ N(t) = 0. В развитии модели логично представить, что J не является константой, но, возможно, станет ступенчатой триггерной функцией [Perevaryukha, 2018]. Например, в простом варианте порог J колеблется от смены сезонов по периодическому закону J(ω(t)).…”
Section: компьютерные исследования и моделированиеunclassified
“…Mikhaylov used models based on algorithmic networks with thousands of nodes [11]. Our models can be calculated by using simple free program tools such as a laptop and a computational workbench tool Rand Model Designer [12].…”
Section: Mathematical Improvement Of a Biological Theory Of The Replenishment Of Stocks Formationmentioning
confidence: 99%