When species shift their ranges to track climate change, they are almost certain to experience novel environments to which they are poorly adapted. Otaki and co-workers document an explosion of wing pattern variation accompanying range expansion in the pale grass blue butterfly. This pattern can be replicated in the laboratory using artificial selection on cold shocked pupae, at temperature extremes typical of recently colonized environments. We discuss how this phenotypic plasticity may be associated with successful colonization and how significant local adaptation is likely to re-establish developmental control. Integrating knowledge of trait plasticity into current genetic models of adaptation is central to our understanding of when and where a colonising population will be able to persist and adapt in novel surroundings.
CommentarySpecies ranges are never fixed, but remain in continual flux in response to demographic, genetic, ecological and environmental variation. Colonization occurs at the range margin when populations spill over into new sites, typically followed by population extinction as environmental and other forces prevent persistence in these new habitats. As the climate has warmed, this turn-over has resulted in expansions that appear more permanent. Consistent northward range shifts have been documented for several vertebrate and invertebrate species