Abstract.Cutting and packing problems arise in many fields of applications and theory. When dealing with irregular objects, an important subproblem is the identification of the optimal clustering of two objects. Within this paper we consider a container (rectangle, circle, convex polygon) of variable sizes and two irregular objects bounded by circular arcs and/or line segments, that can be continuously translated and rotated. In addition minimal allowable distances between objects and between each object and the frontier of a container, may be imposed. The objects should be arranged within a container such that a given objective will reach its minimal value. We consider a polynomial function as the objective, which depends on the variable parameters associated with the objects and the container. The paper presents a universal mathematical model and a solution strategy which are based on the concept of phi-functions and provide new benchmark instances of finding the containing region that has either minimal area, perimeter or homothetic coefficient of a given container, as well as finding the convex polygonal hull (or its approximation) of a pair of objects.