Phi thickenings are specialised secondary wall thickenings present in the root cortex of many plant species, including both angiosperms and gymnosperms. While environmental stresses induce phi thickenings, their role(s) in the root remain unclear. Suggested functions include regulation of transport through the apoplast in a manner similar to the Casparian strip, limiting fungal infections, and providing mechanical support to the root. We investigated phi thickening induction and function in Miltoniopsis sp., an epiphytic orchid. As movement of a fluorescent tracer through the apoplast was not blocked by phi thickenings, and as phi thickenings developed in the roots of sterile cultures in the absence of fungus and did not prevent fungal colonisation of cortical cells, the phi thickenings in Miltoniopsis did not function as a barrier. Phi thickenings, absent in roots grown on agar, remained absent when plants were transplanted to moist soil, but were induced when plants were transplanted to well-drained media, and by the application of water stress. We suggest that it is likely that phi thickenings stabilise to the root during water stress. Nevertheless, the varied phi thickening induction responses present in different plant species suggest that the phi thickenings may play multiple adaptive roles depending on species.