Vector quantization (VQ) is an efficient data compression technique for low bit rate applications. However, the major disadvantage of VQ is that its encoding complexity increases dramatically with bit rate and vector dimension. Even though one can use a modified VQ, such as the tree-structured VQ, to reduce the encoding complexity, it is practically infeasible to implement such a VQ at a high bit rate or for large vector dimensions because of the huge memory requirement for its codebook and for the very large training sequence requirement. To overcome this difficulty, a structurally constrained VQ called the sample-adaptive product quantizer (SAPQ) has recently been proposed. In this paper, we extensively study the SAPQ that is based on scalar quantizers in order to exploit the simplicity of scalar quantization. Through an asymptotic distortion result, we discuss the achievable performance and the relationship between distortion and encoding complexity. We illustrate that even when SAPQ is based on scalar quantizers, it can provide VQ-level performance. We also provide numerical results that show a 2-3 dB improvement over the Lloyd-Max quantizers for data rates above 4 b/point. Index Terms-Lattice vector quantizer, product quantizer, sample-adaptive product quantizer (SAPQ), vector quantizer.