The quest for the perfect single-photon source includes finding the optimal protocol for exciting the quantum emitter. Coherent optical excitation was, up until now, achieved by tuning the laser pulses to the transition frequency of the emitter, either directly or in average. Recently, it was theoretically discovered that an excitation with two red-detuned pulses is also possible where neither of which would yield a significant upperlevel population individually. We show that the so-called swing-up of quantum emitter population (SUPER) scheme can be implemented experimentally with similar properties to existing schemes by precise amplitude shaping of a broadband pulse. Because of its truly off-resonant nature, this scheme has the prospect of powering high-purity photon sources with superior photon count rate.