In this work, we demonstrate a comprehensive theoretical study of onedimensional perfect and defect phononic crystals. In our study, we investigate the elastic and shear waves with the influences of thermal effects. The numerical calculations based on the transfer matrix method (TMM) and Bloch theory are presented, where the TMM is obtained by applying the continuity conditions between two consecutive sub-cells. Also, we show that by introducing a defect layer in the perfect periodic structures (defect phononic crystals), we obtain localization modes within the band structure. These localized modes can be implemented in many applications such as impedance matching, collimation, and focusing in acoustic imaging applications. Then, we investigate the influences of the incident angle and material types on the number and intensity of the localized modes in both cases of perfect/defect crystals. In addition, we have observed that the temperature has a great effect on the wave localization phenomena in phononic band gap structures. Such effects can change the thermal properties of the PnCs structure such as thermal conductivity, and it can also control the thermal emission, which is contributed by phonons in many engineering structures.