“…[87][88][89]. The use of orthophosphate solutions within surface soils and deep subsurface environments requires strategies that prevent (1) rapid precipitation of contaminants and other sediment components (e.g., Al, Ca, Fe, Mg, and Mn) that affects hydraulic conductivity, (2) leaching of metals (e.g., As, Se, and W), and (3) ecosystem eutrophication caused by excess P runoff [82,[89][90][91]. Compounds such as phytic acid (i.e., the acid form of inositol-6-phosphate) and polyphosphate have been examined for their ability to (1) act as sites for ion exchange, (2) facilitate the slow delivery of orthophosphate, and (3) act as chelating agents that minimize the bioavailability of cations within contaminated environments [92][93][94][95].…”