Inositol phosphates are the dominant class of organic phosphorus (P) compounds in most soils, but they are poorly understood because they are not easily identified in soil extracts. This study reports a relatively simple technique using solution 31P NMR spectroscopy and spectral deconvolution for the quantification of myo-inositol hexakisphosphate (phytic acid), the most abundant soil inositol phosphate, in alkaline soil extracts. An authentic myo-inositol hexakisphosphate standard added to a re-dissolved soil extract gave signals at 5.85, 4.92, 4.55, and 4.43 ppm in the ratio 1:2:2:1. Spectral deconvolution quantified these signals accurately (102 ± 4%) in solutions containing a mixture of model P compounds by resolving the envelope of signals in the orthophosphate monoester region. In NaOH-EDTA extracts from a range of lowland permanent pasture soils in England and Wales, concentrations of myoinositol hexakisphosphate determined by spectral deconvolution ranged between 26 and 189 mg P kg-1 soil, equivalent to between 11 and 35% of the extracted organic P. Concentrations were positively correlated with oxalate-extractable aluminum and iron but were not correlated with total carbon, total nitrogen, clay, or the microbial biomass. This suggests that myo-inositol hexakisphosphate accumulates in soils by mechanisms at least partially independent of those controlling organic matter stabilization and dynamics. Furthermore, myo-inositol hexakisphosphate concentrations were positively correlated with plant-available inorganic P and negatively correlated with the carbon-to-organic P ratio, suggesting that biological P availability may, in part, regulate myo-inositol hexakisphosphate concentrations in soils, perhaps because organisms capable of degrading this compound are favored in more P-limited environments. Solution 31P NMR spectroscopy and spectral deconvolution offers a relatively simple method of quantifying myo-inositol hexakisphosphate in soil extracts. (Soil Science 2003;168:000-000)