Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells.Toxoplasma gondii is an opportunistic intracellular pathogen of the phylum Apicomplexa that inflicts life-threatening acute and chronic infections in humans and animals (1). The parasite causes ocular and cerebral toxoplasmosis and sporadic abortion/stillbirth as a consequence of severe tissue necrosis in individuals with a poor or weakened immunity, e.g. neonates, AIDS, and organ-transplantation patients. The lytic cycle of T. gondii starts with the active energy-dependent invasion of host cells by the tachyzoite stage that is followed by rapid intracellular replication, egress by host-cell lysis, and reinvasion of adjacent cells. Upon infection of host cells in vitro, one tachyzoite can usually produce 32-64 daughter cells within a nonfusogenic vacuole, which provides a safe niche for the parasite replication and an interface for acquisition of host resources (1). Such an efficient asexual reproduction and concomitant expansion of the parasite vacuole requires a significant nutritional import and biomass synthesis within the parasite. Moreover, tachyzoites likely need to adjust metabolism according to variable bioenergetic demands of extracellular and intracellular states as well as to the nutritional cues in distinct...