Alcohol use disorders (AUDs) are very common worldwide and negatively affect both individuals and societies. To understand how normal behavior turns into uncontrollable use of alcohol, several approaches have been utilized in the last decades. However, we still do not completely understand how AUDs evolve or how they are maintained in the brains of affected individuals. In addition, efficient and effective treatment is still in need of development. This review focuses on alternative approaches developed over the last 20 years using Drosophila melanogaster (Drosophila) and Caenorhabditis elegans (C. elegans) as genetic model systems to determine the mechanisms underlying the action of ethanol (EtOH) and behaviors associated with AUDs. All the results and insights of studies over the last 20 years cannot be comprehensively summarized. Thus, a few prominent examples are provided highlighting the principles of the genes and mechanisms that have been uncovered and are involved in the action of EtOH at the cellular level. In addition, examples are provided of the genes and mechanisms that regulate behaviors relevant to acquiring and maintaining excessive alcohol intake, such as decision making, reward and withdrawal, and/or relapse regulation. How the insight gained from the results of Drosophila and C. elegans models can be translated to higher organisms, such as rodents and/or humans, is discussed, as well as whether these insights have any relevance or impact on our understanding of the mechanisms underlying AUDs in humans. Finally, future directions are presented that might facilitate the identification of drugs to treat AUDs.