Recurrent implantation failure (RIF), a major issue in assisted reproductive technology (ART), may be influenced by necroptosis, a form of cell death linked to several diseases. This study was aimed at investigating the involvement of necroptosis in RIF. Using RNA-sequencing data from the Gene Expression Omnibus database, we identified differentially expressed necroptosis-related genes (DENRGs) in RIF patients compared with those in controls. Functional enrichment, protein–protein interaction (PPI) networks, and transcription factor (TF) regulatory networks were analyzed to identify key genes. Immune cell infiltration was analyzed using the single-sample gene set enrichment analysis (ssGSEA) algorithm. Finally, potential therapeutic drugs targeting key genes were explored using a Drug Gene Interaction Database. In total, 20 DENRGs associated with RIF were identified, with a focus on 6 key genes (MLKL, FASLG, XIAP, CASP1, BIRC3, and TLR3) implicated in necroptosis and immune processes. These genes were used to develop a predictive model for RIF, which was validated in 2 datasets. The model and TF network analysis underscored the importance of TLR3. Immune infiltration analysis showed reduced levels of 16 immune cells in RIF patients, highlighting immune system alterations. Several drugs targeting CASP1, such as nivocasan and emricasan, were identified as potential treatments. The study sheds light on the role of necroptosis in RIF, identifying key genes and immune alterations that could serve as biomarkers and therapeutic targets. These findings pave the way for future experimental research and clinical applications targeting necroptosis in RIF treatment.