Previously, we showed that oleic acid (OA) induces Trypanosoma cruzi metacyclogenesis through a signaling pathway involving de novo diacylglycerol biosynthesis and simultaneous protein kinase C (PKC) activation. Herein, we demonstrated that OA also triggers a transient Ca(2+) signal in epimastigotes, necessary for parasite differentiation, that could account for PKC activation. In addition, we found that this free fatty acid (FFA) directly stimulated in vitro the activity of T. cruzi PKC in a dose-response way. We determined the presence of classical and novel PKC isoenzymes that were differentially expressed in the infective amastigotes (alpha and delta) and tripomastigotes (alpha, beta, and gamma) and in the non-infective epimastigotes (alpha, beta, gamma, and delta). We also demonstrated that OA induced in epimastigotes the translocation of PKC alpha, beta, gamma, and delta to the membrane, indicating a selective effect of this FFA. To establish a correlation between T. cruzi metacyclogenesis induced by OA and the activation of a particular PKC isoenzyme, the specific PKC inhibitors Ro 32-0432 and Rottlerin (9-30 nM and 5-35 microM, respectively) were employed. These compounds, even at the lowest concentrations assayed, abrogated both epimastigote differentiation and membrane translocation of PKC beta, gamma, and delta. These findings strongly support a key role for classical and novel PKC isoenzymes in the signaling pathways involved in T. cruzi metacyclogenesis induced by OA.