One of the major determinants of organic solvent tolerance is the increase in membrane phospholipids. Here we report for the first time that an increase in the synthesis of phosphatidic acid is responsible for enhanced phospholipid synthesis that confers tolerance to the organic solvent in Saccharomyces cerevisiae. This increase in phosphatidic acid formation is because of the induction of Ict1p, a soluble oleoyl-CoA:lysophosphatidic acid acyltransferase. YLR099C (ICT1) was reported to be maximally expressed during solvent tolerance (Miura, S., Zou, W., Ueda, M., and Tanaka, A. (2000) Appl. Environ. Microbiol. 66, 4883-4889); however, its physiological significance was not understood. In silico analysis revealed the absence of any transmembrane domain in Ict1p. Domain analysis showed that it has a hydrolase/acyltransferase domain with a distinct lipid-binding motif and a lysophospholipase domain. Analysis of ict1⌬ strain showed a drastic reduction in phosphatidic acid suggesting the role of Ict1p in phosphatidic acid biosynthesis. Overexpression of Ict1p in S. cerevisiae showed an increase in phosphatidic acid and other phospholipids on organic solvent exposure. To understand the biochemical function of Ict1p, the gene was cloned and expressed in Escherichia coli. The purified recombinant enzyme was found to specifically acylate lysophosphatidic acid. Specific activity of Ict1p was found to be higher for oleoyl-CoA as compared with palmitoyl-and stearoyl-CoAs. This study provides a mechanism for organic solvent tolerance from the point of membrane dynamics in S. cerevisiae.Tolerance to organic solvents was reported in several microorganisms, which includes Pseudomonas strains (1) and Saccharomyces cerevisiae (2). Steady accumulation of these solvents in plasma membrane resulted in the loss of structural integrity (3). Because the plasma membrane acts as a selectively permeable barrier of the cell, such a toxicity causes an impairment in the ionic and the metabolic balances, pH gradient, electrical potential, etc., leading to cell lysis.Cell surface modifications were found to be one major reason for such a tolerance. Other important factors are metabolic degradation of organic solvents, pumps responsible for extrusion (2), changes in saturated fatty acid contents, and conversion from cis to trans fatty acids (4). For example in Pseudomonas putida DOT-T1, the conversion of cis-9,10-methylene hexadecanoic acid to unsaturated cis-9-hexadecenoic acid was observed on exposure to toluene. However, the mechanism for the conversion is unknown (5). Change in the phospholipid content was shown to be an important factor in providing tolerance against the organic solvents. Elegant work on mechanisms of solvent tolerance in P. putida strain Idaho showed that the strain was able to repair the damaged membranes through efficient turnover and increased phospholipid biosynthesis. A detailed analysis of phospholipid head group turnover revealed the presence of a large amount of phosphatidylglycerol followed by phosphatidylethanol...