Scramblases translocate phospholipids across the membrane bilayer bidirectionally in an ATP-independent manner. The first scramblase to be identified and biochemically verified was opsin, the apoprotein of the photoreceptor rhodopsin. Rhodopsin is a G protein-coupled receptor localized in rod photoreceptor disc membranes of the retina where it is responsible for the perception of light. Rhodopsin’s scramblase activity does not depend on its ligand 11-cis-retinal, i.e., the apoprotein opsin is also active as a scramblase. Although constitutive and regulated phospholipid scrambling play an important role in cell physiology, only a few phospholipid scramblases have been identified so far besides opsin. Here we describe a fluorescence-based assay of opsin’s scramblase activity. Opsin is reconstituted into large unilamellar liposomes composed of phosphatidylcholine, phosphatidylglycerol and a trace quantity of fluorescent NBD-labeled PC (1-palmitoyl-2-{6-[7-nitro-2-1,3-benzoxadiazole-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine). Scramblase activity is determined by measuring the extent to which NBD-PC molecules located in the inner leaflet of the vesicle are able to access the outer leaflet where their fluorescence is chemically eliminated by a reducing agent that cannot cross the membrane. The methods we describe have general applicability and can be used to identify and characterize scramblase activities of other membrane proteins.