Methylamine, a weak base, inhibits packaging of newly synthesized phosphatidylcholine (PC) in lamellar bodies in 20-22 h cultured alveolar type II cells, suggesting a role for acidic pH of lamellar bodies. In this study, we tested if (i) the packaging of PC is similarly regulated in freshly isolated type II cells and (ii) methylamine also inhibits the packaging of other surfactant phospholipids, particularly, phosphatidylglycerol (PG). The latter would suggest coordinated packaging so as to maintain the phospholipid composition of lung surfactant. During the short-term metabolic labeling experiments in freshly isolated type II cells, methylamine treatment decreased the incorporation of radioactive precursors into PC, disaturated PC (DSPC), and PG of lamellar bodies but not of the microsomes, when compared with controls. The calculated packaging (the percentage of microsomal lipid packaged in lamellar bodies) of each phospholipid was similarly decreased (approximately 50%) in methylamine-treated cells, suggesting coordinated packaging of surfactant phospholipids in lamellar bodies. Equilibrium-labeling studies with freshly isolated type II cells (as is routinely done for studies on surfactant secretion) +/- methylamine showed that in methylamine-treated cells, the secretion of PC and PG was decreased (possibly due to decreased packaging), but the phospholipid composition of released surfactant (measured by radioactivity distribution) was unchanged; and the PC content (measured by mass or radioactivity) of lamellar bodies was lower, but the PC composition (as percentage of total phospholipids) was unchanged when compared with control cells. We speculate that the newly synthesized surfactant phospholipids, PC, DSPC, and PG, are coordinately transported into lamellar bodies by a mechanism requiring the acidic pH, presumably, of lamellar bodies.