The phospholipids of Neisseria meningitidis and Neisseria gonorrhoeae were characterized by fast atom bombardment (FAB)-MS and GLC-MS. The major phospholipids were phosphatidylethanolamine (PE), followed by phosphatidylglycerol (PG), with minor amounts of phosphatidic acid (PA) and trace levels of cardiolipin (DPG). All of the phospholipid preparations were variable in their fatty acyl substituents, which included C16 :1, C16 :0, C18 :1, C14 :0, C14 :1 and C12 :0. By MS/MS analysis, all pathogenic Neisseria spp. phospholipids contained a saturated fatty acyl substituent and either a saturated or unsaturated fatty acyl substituent in the sn-1 and sn-2 positions, respectively. Compared with enteric bacterial species, the phospholipids of N. meningitidis and N. gonorrhoeae have increased levels of phospholipids with short-chain fatty acyl residues (i.e. increases in C12 :0, C14 :1 and C14 :0) and variable amounts of C18 :1. The percentage of total PE and PG molecules with the shorter-chain fatty acids ranges from 35 to 47 % and 42 to 66 %, respectively, for N. meningitidis while these respective values are T10 % and T5 % for Escherichia coli. The variability and variety of meningococcal and gonococcal phospholipids suggest novel genetic mechanisms of neisserial phospholipid assembly and regulation, which may be important for the biology and pathogenesis of N. meningitidis and N. gonorrhoeae.