Recent studies of protein post-translational modifications revealed that various types of lysine acylation occur in eukaryotic and bacterial proteins. Lysine propionylation, a newly discovered type of acylation, occurs in several proteins, including some histones. In this study, we identified 361 propionylation sites in 183 mid-exponential phase and late stationary phase proteins from Thermus thermophilus HB8, an extremely thermophilic eubacterium. Functional classification of the propionylproteins revealed that the number of propionylation sites in metabolic enzymes increased in late stationary phase, irrespective of protein abundance. The propionylation sites on proteins expressed in mid-exponential and late stationary phases partially overlapped. Furthermore, amino acid frequencies in the vicinity of propionylation sites differed, not only between the two growth phases but also relative to acetylation sites. In addition, 33.8% of mid-exponential phasespecific and 80.0% of late stationary phase-specific propionylations (n > 2) implied that specific mechanisms regulate propionylation in the cell. Moreover, the limited degree of overlap between lysine propionylation (36.8%) and acetylation (49.2%) sites in 67 proteins that were both acetylated and propionylated strongly suggested that the two acylation reactions are regulated separately by specific enzymes and may serve different functions. Finally, we also found that eight propionylation sites overlapped with acetylation sites critical for protein functions such as Schiffbase formation and ligand binding. Molecular & Cellular