Enzymes participating in different metabolic pathways often have similar catalytic mechanisms and structures, suggesting their evolution from a common ancestral precursor enzyme. We sought to create a precursor-like enzyme for N -[(5 -phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) isomerase (HisA; EC 5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF; EC 5.3.1.24), which catalyze similar reactions in the biosynthesis of the amino acids histidine and tryptophan and have a similar (␣) 8-barrel structure. Using random mutagenesis and selection, we generated several HisA variants that catalyze the TrpF reaction both in vivo and in vitro, and one of these variants retained significant HisA activity. A more detailed analysis revealed that a single amino acid exchange could establish TrpF activity on the HisA scaffold. These findings suggest that HisA and TrpF may have evolved from an ancestral enzyme of broader substrate specificity and underscore that (␣) 8-barrel enzymes are very suitable for the design of new catalytic activities.E nzymes of contemporary metabolic pathways are generally specific and efficient biocatalysts. They can be categorized into a limited number of families, the members of which share similar reaction mechanisms, folds, or both (1). This leads to the idea that the members of a given enzyme family are evolutionarily related. In principle, two different evolutionary scenarios can be envisioned. New catalytic functions of enzymes could have evolved by changing the chemistry of catalysis, while retaining the binding capacity for a common ligand. This idea of retrograde evolution (2) was recently supported by the successful interconversion of the catalytic activity of two enzymes from tryptophan biosynthesis, which catalyze successive reactions in the pathway and therefore bind the same ligand (3). Alternatively, new catalytic functions could have evolved by retaining the chemistry of catalysis, while changing the substrate specificity (1). Along these lines, the patchwork model of enzyme evolution (4) postulates that ancestral enzymes were relatively unspecific and therefore were capable of catalyzing chemically similar reactions in different metabolic pathways. Genes encoding these enzymes would have duplicated in the course of evolution and would have subsequently specialized by diversification.
NЈ-[(5Ј-Phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) isomerase (HisA; EC 5.3.1.16) and phosphoribosylanthranilate (PRA) isomerase (TrpF; EC 5.3.1.24) constitute a pair of similar enzymes, which are involved in the biosynthesis of the amino acids histidine and tryptophan, respectively (5, 6). Both HisA and TrpF catalyze an Amadori rearrangement, which is the irreversible isomerization of an aminoaldose to an aminoketose (Fig. 1). Also, despite the lack of detectable amino acid sequence similarity, HisA and TrpF belong to the same structural family of (␣) 8 -barrels (7, 8), which is the most frequent fold among single-dom...