Although phytoliths constitute part of the wetland suspended load, there are few studies focused on the quantification of them in the biogenic silica (BSi) pool. So, the aim of this paper is both to determine BSi content (diatoms and phytoliths) and its relationship with dissolved silica in surface waters, and the influence of soil and groundwater Si biogeochemistry in Los Padres wetland (Buenos Aires Province, Argentina). In the basin of the Los Padres wetland, dissolved silica (DSi) concentration is near 840 ± 232 lmol/L and 211.83 ± 275.92 lmol/L in groundwaters and surface waters, respectively. BSi represents an 5.6-22.1% of the total suspension material, and 8-34% of the total mineralogical components of the wetland bottom sediments. DSi and BSi vary seasonally, with highest BSi content (diatoms specifically) during the spring-summer in correlation to the lowest DSi concentration. DSi (660-917.5 lmol/L) and phytolith (3.35-5.84%) concentrations in the inflow stream are higher than in the wetland and its outflow stream (19.1-113 lmol/L; 0.45-3.2%, respectively), probably due to the high phytolith content in soils, the high silica concentration in the soil solution, and the groundwater inflow. Diatom content (5-16.8%) in the wetland and its outflow stream is higher than in the inflow stream (0.45-1.97%), controlling DSi in this system. The understanding of the groundwater-surface water interaction in an area is a significant element for determining the different components and the role that they play on the local biogeochemical cycle of Si.