Background:The recycling of waste products into P fertilisers in agriculture is advisable from the perspective of sustainability. Bioeffectors (BEs), which have the ability to increase the plant uptake of P from recycled fertiliser products, may increase the fertiliser value of these products. This paper investigated the effect of a range of different recycled fertilisers on the growth and P uptake of wheat in pot experiments conducted at three different locations in Europe. Furthermore, investigations were undertaken as to whether the addition of a range of bioeffectors could significantly enhance P availability, P uptake and plant growth.Results: BE additions were found not to significantly increase the aboveground biomass of wheat plants or the uptake of P when plants were fertilised with recycled fertiliser products. This was shown across a range of pot experiments with soils of different P status. Only in the case of the positive control P fertiliser (TSP) was a positive effect of Proradix and RhizoVital on plant growth observed in one of the experiments, while in the same experiment RhizoVital and Biological fertiliser DC had a negative impact on plant biomass when the P fertiliser was Thomas phosphate. With regard to P uptake, there was only a slight positive effect of Proradix in plants not supplied with P fertiliser in this experiment. Clear differences were seen in the efficiency of P fertilisers. Generally, sewage sludge ash performed quite poorly (20-40 % of TSP), while sewage sludge, Thomas phosphate, P-enriched slag and the fibre fraction of pig manure all had a high availability of P (>74 % relative to TSP). Compost composed mainly of garden/park waste and sewage sludge was intermediate in availability (40-70 %). The elemental composition of the harvested wheat plants was significantly affected in all cases by the different P fertilisers added. The BE treatments significantly affected the elemental composition of the aboveground biomass in one of the experiments where the product Proradix had the greatest effect on elemental composition.
Conclusions:In conclusion, the experiments revealed a wide difference in the bioavailability of P in the different waste products, but the added microorganisms demonstrated a limited capacity to influence plant P uptake across a range of soils and waste products.