In the present work, a novel Cu(II) complex containing 10phenanthroline-5,6-dione (phen-dione) and acetylacetone (acac) was prepared via solid-phase synthesis on silica-modified hercynite magnetic nanoparticles (MNPs). The resulting structure underwent thorough structural analysis using diverse instrumental techniques. The catalytic potential of the synthesized Cu(II) complex was successfully demonstrated in the synthesis of 2-amino-3-cyano-4H-chromenes. This was accomplished via a one-pot, three-component condensation reaction involving lawsone, malononitrile, and aromatic aldehydes in ethanol under reflux conditions, leading to remarkably high yields and product purity. Several advantages stem from this investigation. Notably, the use of ethanol as a sustainable and environmentally friendly solvent highlights the ecoconscious approach of this research. Moreover, the reaction conditions were mild and the separation process was straightforward, resulting in reduced byproducts as well as time and cost savings. Furthermore, the catalyst's stability and reusability were studied under optimal conditions, revealing excellent reversibility for up to five cycles without any significant loss of activity. This excellent performance underscores the potential of the Cu(II) complex for sustainable catalytic applications.