In this study, poly(vinylphosphonic acid-co-ethylene dimethacrylate), poly(VPA-co-EDMA) capillary monolith was synthesized as a starting material for obtaining a stationary phase for microscale enrichment of phosphopeptides. The chelation of active phosphonate groups with Ti (IV) ions gave a macroporous monolithic column with a mean pore size of 5.4 μm. The phosphopeptides from different sources were enriched on Ti (IV)-attached poly(VPA-co-EDMA) monolith using a syringe-pump. The monolithic capillary columns exhibited highly sensitive/selective enrichment performance with phosphoprotein concentrations as low as 1.0 fmol/mL. Six different phosphopeptides were detected with high intensity by the treatment of β-casein digest with the concentration of 1.0 fmol/mL, using Ti (IV)@poly(VPA-co-EDMA) monolith. Highly selective enrichment of phosphopeptides was also successfully carried out even at trace amounts, in a complex mixture of digested proteins (molar ratio of β-casein to bovine serum albumin, 1:1500) and three phosphopeptides were successfully detected. Four highly intense signals of phosphopeptides in human serum were also observed with high signal-to-noise ratio and a clear background after enrichment with Ti (IV)@poly(VPA-co-EDMA) monolith. It was concluded that the capillary microextraction system enabled fast, efficient and robust enrichment of phosphopeptides from microscale complex samples. The whole enrichment process was completed within 20 min, which was shorter than in the previously reported studies.KEYWORDS capillary monolith, human serum, immobilized metal affinity chromatography, phosphopeptide enrichment, syringe type microextration, vinylphosphonic acid