Aging and agro‐waste are major challenges. Natural ingredients are preferred in skincare. This study intended to isolate the essential oils (EO) from the leftover peels obtained from three commonly edible Citrus species fruit peels, namely Citrus paradisi (grapefruit), Citrus sinensis (sweet orange), and Citrus deliciosa (mandarin). Gas chromatography/mass spectrometry analysis identified volatile constituents in EO and headspace aroma. Multivariate analysis distinguished between the three species. The antiaging effects of Citrus EO were assessed in vitro and in silico, studying volatile interactions with target enzymes. C. sinensis peels had the highest oil yield, rich in monoterpenes. C. paradisi and C. deliciosa contained sesquiterpenes. Limonene dominated the hydrodistilled EO: 94.50% in C. paradisi, 96.80% in C. sinensis, and 80.66% in C. deliciosa. Unsupervised multivariate analysis of Citrus species revealed that
d‐limonene, γ‐terpinene, and β‐pinene are the key phytochemical markers contributing to their diverse chemical composition. C. paradisi exhibited the highest enzyme inhibitory activity, with IC50 values of 12.82, 27.58, and 18.16 µg/mL for tyrosinase, elastase, and collagenase, respectively. In silico studies showed that the volatiles can inhibit the tested antiaging enzymes. According to these findings, the investigated agro‐waste might slow aging in skin care.