The research field of liquid crystals and their applications is recently changing from being largely focused on display applications and optical shutter elements in various fields, to quite novel and diverse applications in the area of nanotechnology and nanoscience. Functional nanoparticles have recently been used to a significant extent to modify the physical properties of liquid crystals by the addition of ferroelectric and magnetic particles of different shapes, such as arbitrary and spherical, rods, wires and discs. Also, particles influencing optical properties are increasingly popular, such as quantum dots, plasmonic, semiconductors and metamaterials. The self-organization of liquid crystals is exploited to order templates and orient nanoparticles. Similarly, nanoparticles such as rods, nanotubes and graphene oxide are shown to form lyotropic liquid crystal phases in the presence of isotropic host solvents. These effects lead to a wealth of novel applications, many of which will be reviewed in this publication. the observation of chirality from achiral molecules, resulting from sterically induced packing of the bent-core mesogens [10], such as ferroelectricity or the formation of helical superstructures in the B7 phase [14]. Thermotropic LCs are commonly constituted by single organic entities or mixtures thereof, which exhibit various mesophases at different temperatures or pressures [15], illustrated in Figure 1b. As the temperature rises, a typical thermotropic LC passes through higher ordered phases, also called soft crystals, the hexatic smectic phases with positional order as well as bond orientational order, through the fluid smectic phases (SmC and SmA), which exhibit both positional and orientational order, and finally to the nematic phase (N) with purely orientational order, into the isotropic phase. The number of different phases observed depends on the chemical composition, symmetry and order of the LC molecules. About 25 different thermotropic phases are known to date, and they are still increasing in number. Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 47 unique effects of the observation of chirality from achiral molecules, resulting from sterically induced packing of the bent-core mesogens [10], such as ferroelectricity or the formation of helical superstructures in the B7 phase [14]. Thermotropic LCs are commonly constituted by single organic entities or mixtures thereof, which exhibit various mesophases at different temperatures or pressures [15], illustrated in Figure 1b. As the temperature rises, a typical thermotropic LC passes through higher ordered phases, also called soft crystals, the hexatic smectic phases with positional order as well as bond orientational order, through the fluid smectic phases (SmC and SmA), which exhibit both positional and orientational order, and finally to the nematic phase (N) with purely orientational order, into the isotropic phase. The number of different phases observed depends on the chemical composition, symmetry and order of the LC molecules. About...