Today’s energy demand is highly increased with the world’s population growth and technological advancement. Natural dye-sensitized solar cells (N-DSSCs) are attracting research areas as an alternative and renewable energy source due to their simple preparation technique, availability, cost-effectiveness, and environmentally friendliness. In the present work, we have successfully fabricated DSSC from Thymus schimperi Ronniger plant flowers for the first time. The solvents used for extraction of the flower dye were deionized water and its mixture with ethanol. The Thymus schimperi Ronniger flowers extracted dye solutions and sensitized photoanodes were characterized by FTIR and UV-Vis characterization techniques. The crystallinity of TiO2 film was analyzed by the XRD technique and shows pure anatase phase behavior. The photoelectrochemical solar cell performance parameters, like, short circuit current density (JSC), open circuit voltage VOC), fill factor (FF), and efficiency were evaluated from the current density-voltage (J-V) measurement using a Keithley 2450 source meter. DSSC sensitized with extracted dye solution by the mixture of water and ethanol showed better performance (1.37%) as compared with that of extracted dye solution by Deionized water alone (1,02%). 

Keywords: Renewable energy, Dye-sensitized solar cells, Thymus Schimperi Ronniger, photoelectrochemical