Abstract. In this paper the effects of post-deposition annealing followed by hydrogen ionimplantation on the properties of CuIn 0.75 Ga 0.25 Se 2 thin films have been investigated. The samples were grown by flash evaporation onto glass substrates heated at temperature between room temperature and 200°C. Selected samples were subsequently processed under several sets of conditions, including vacuum, selenium, inert (argon) and forming gas (a 9:1 mixture of N 2 :H 2 ) followed by hydrogen ion-implantation. A high resolution near-infrared photoacoustic spectrometer of the gas-microphone type was used for room temperature analysis of non-radiative defect levels in the as-grown, annealed and hydrogen implanted thin films. The absorption coefficient has been derived from the PA spectra to determine the gap energy and to establish the activation energies for several defect-related energy levels. The changes observed in the PA spectra following annealing and ionimplantation has been directly correlated with the compositional and structural properties of the samples.