Photocatalysis is a powerful tool to assemble diverse chemical scaffolds, yet a bottleneck on its further development is the understanding of the multitude of possible pathways when practitioners rely only on oversimplified thermodynamic and optical factors. Recently, there is a growing number of studies in the field that exploit, inter alia, kinetic parameters and organophotocatalysts that are synthetically more programmable in terms of their redox states and opportunities for aggregation with a target substrate. Non‐covalent interactions play a key role that enables access to a new generation of reactivities such as those of open‐shell organophotocatalysts. In this review, we discuss how targeted structural and redox modifications influence the organophotocatalytic mechanisms together with their underlying principles. We also highlight the benefits of strategies such as preassembly and static quenching that overcome common reactivity issues (e. g., diffusion rate limits and energetic limits).