Photocatalytic CO conversion to hydrocarbons (sometimes referred to as 'artificial photosynthesis'), which mimics natural photosynthesis with purely inorganic photocatalysts, has the potential to simultaneously combat the energy crisis and the greenhouse effect. In more than half of all reported studies to date, TiO -based materials are used as the photocatalyst. Yet, the reaction conditions and reactor designs employed in previous studies cover a vast range, hindering mutual comparisons of observed activities and selectivity. In this work, a systematic literature study is attempted, including a selection of only such research publications which report experimental conditions of high purity and a proof of the carbon source (blank experiments, CO isotope labelling or stoichiometric O identification) for CO photoreduction. General trends were then detected and discussed, aiming to guide future research to more efficient photocatalytic systems.