Aqueous solutions of tetracycline, lincomycin and ranitidine were irradiated with UV light in homogeneous and heterogeneous systems. Two commercial polycrystalline TiO 2 powders (Degussa P25 and Merck) were used as photocatalysts. After 5 h, an appreciable photolytic degradation of tetracycline and ranitidine was observed while the degradation of lincomycin was noticeably lower. As far as the mineralization is concerned, a small decrease of the TOC values was measured in the case of tetracycline whereas negligible variations were found for lincomycin or ranitidine. The presence of the photocatalysts greatly enhanced the degradation rates of the drugs with respect to those observed during the homogeneous experiments. The Langmuir-Hinshelwood kinetic model adequately describes the experimental results and both the pseudo-first order kinetic constants of the reactions and the adsorption constants were calculated. Merck TiO 2 was more active than P25 Degussa for the photodegradation of tetracycline and ranitidine, whereas both photocatalysts showed similar performances for lincomycin. In the presence of TiO 2 Degussa P25, tetracycline was almost completely mineralized, but the reduction of the initial TOC was ca. 60% in the case of lincomycin and ranitidine. A less significant mineralization was observed by using Merck TiO 2 .