Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The objective of this study is to map, describe, and identify “water treatment using catalysts and/or nanomaterials” and their derivable aspects. A comprehensive search was conducted in academic databases such as WoS and Scopus, following the PRISMA methodology, to identify relevant studies published between 2010 and 2024. Inclusion and exclusion criteria were applied to select articles that address both experimental and theoretical aspects of photocatalysis in wastewater treatment. The methodology is developed through exploratory data analysis and the use of the Tree of Science algorithm. The first results indicate the roots, in which it is possible to gain knowledge of the environment for the implementation of a photoreactor it uses as a photocatalyst agent. A total of 94 relevant articles were identified. The results show that most studies focus on the degradation of organic pollutants using TiO2 as a photocatalyst. Additionally, there has been a significant increase in the number of publications and citations in recent years, indicating growing interest in this field. Then, in the trunk, some more solid ideas in terms of basic concepts, techniques and possible variations for the application of knowledge and development of future research related to the initial topic are indicated. Finally, through the leaves, new modifications and combinations of the photocatalytic materials are obtained, in search of improving their performance in terms of reduction in water contaminants. From the above, centrality in photocatalysis is identified as an alternative for water remediation using different photocatalysts. It is concluded that the total citation network contains, within the most important nodes, articles of high interest in the community, such as those authored by Zhang, Xiaofei; Nezamzadeh-Ejhieh, Alireza; or Li, Jingyi, from countries in the Middle East and the Asian continent, justified not only by the research capabilities of these countries, but also by the needs and problems that these regions face in terms of water scarcity. Future work indicates the need for and interest in improving various characteristics such as photocatalytic performance, the number of cycles that the material supports, and its reduction capacity in the presence of high concentrations of contaminants, with the intention of maximizing the benefits of its applicability in water treatment.
The objective of this study is to map, describe, and identify “water treatment using catalysts and/or nanomaterials” and their derivable aspects. A comprehensive search was conducted in academic databases such as WoS and Scopus, following the PRISMA methodology, to identify relevant studies published between 2010 and 2024. Inclusion and exclusion criteria were applied to select articles that address both experimental and theoretical aspects of photocatalysis in wastewater treatment. The methodology is developed through exploratory data analysis and the use of the Tree of Science algorithm. The first results indicate the roots, in which it is possible to gain knowledge of the environment for the implementation of a photoreactor it uses as a photocatalyst agent. A total of 94 relevant articles were identified. The results show that most studies focus on the degradation of organic pollutants using TiO2 as a photocatalyst. Additionally, there has been a significant increase in the number of publications and citations in recent years, indicating growing interest in this field. Then, in the trunk, some more solid ideas in terms of basic concepts, techniques and possible variations for the application of knowledge and development of future research related to the initial topic are indicated. Finally, through the leaves, new modifications and combinations of the photocatalytic materials are obtained, in search of improving their performance in terms of reduction in water contaminants. From the above, centrality in photocatalysis is identified as an alternative for water remediation using different photocatalysts. It is concluded that the total citation network contains, within the most important nodes, articles of high interest in the community, such as those authored by Zhang, Xiaofei; Nezamzadeh-Ejhieh, Alireza; or Li, Jingyi, from countries in the Middle East and the Asian continent, justified not only by the research capabilities of these countries, but also by the needs and problems that these regions face in terms of water scarcity. Future work indicates the need for and interest in improving various characteristics such as photocatalytic performance, the number of cycles that the material supports, and its reduction capacity in the presence of high concentrations of contaminants, with the intention of maximizing the benefits of its applicability in water treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.