2003
DOI: 10.1016/s0360-1323(02)00212-3
|View full text |Cite
|
Sign up to set email alerts
|

Photocatalytic oxidation for indoor air purification: a literature review

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

7
440
1
26

Year Published

2008
2008
2016
2016

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 837 publications
(474 citation statements)
references
References 35 publications
7
440
1
26
Order By: Relevance
“…While effective at the removal of volatile organic compounds (VOCs), these methods both have their own shortcomings. Sorbent materials and filters only trap the contaminants and must undergo further handling and disposal procedures to render the contaminants nonhazardous; they also require replacement or refurbishment after the material is spent [1,2]. On the other hand, thermal methods act to break down contaminants but require significant energy input for heating: temperatures in the range of 200-250°C for processes incorporating catalysts [3] and a range of730-850°C for those processes not incorporating catalysts [4]; furthermore, there is the potential for harmful side-product formation (e.g., NO x and S02) from the thermal process which requires subsequent purification [5].…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…While effective at the removal of volatile organic compounds (VOCs), these methods both have their own shortcomings. Sorbent materials and filters only trap the contaminants and must undergo further handling and disposal procedures to render the contaminants nonhazardous; they also require replacement or refurbishment after the material is spent [1,2]. On the other hand, thermal methods act to break down contaminants but require significant energy input for heating: temperatures in the range of 200-250°C for processes incorporating catalysts [3] and a range of730-850°C for those processes not incorporating catalysts [4]; furthermore, there is the potential for harmful side-product formation (e.g., NO x and S02) from the thermal process which requires subsequent purification [5].…”
mentioning
confidence: 99%
“…On the other hand, thermal methods act to break down contaminants but require significant energy input for heating: temperatures in the range of 200-250°C for processes incorporating catalysts [3] and a range of730-850°C for those processes not incorporating catalysts [4]; furthermore, there is the potential for harmful side-product formation (e.g., NO x and S02) from the thermal process which requires subsequent purification [5]. An emerging alternative method for air pollution control employs the use of semiconductors in photocatalytic oxidation (PCO) of organic contaminants to produce innocuous CO 2 and H 2 0 [1,6,7] . The primary advantages ofPCO over the aforementioned technologies are the use of non-expendable materials and low energy demand because the process operates at or near room temperature.…”
mentioning
confidence: 99%
“…De modo geral, estes processos, envolvem oxidação química, 6-8 eletroquímica, 9 fotocatalítica 10,11 e/ou fotoeletrocatalítica. 12,13 Os processos de oxidação fotoeletrocatalítica têm sido a grande aposta por parte dos investigadores, pois têm demonstrado ser eficientes, econômicos e "amigos" do ambiente em várias aplicações industriais, 14 incluindo a mineralização de poluentes orgânicos, [15][16][17] purificação de água 18 e ar, 19 assim como na produção de combustí-veis 20,21 e eletricidade. 22 Este tipo de processo baseia-se, de modo geral, na irradiação de um material semicondutor por fotóns, suficientemente energéticos, que permitam a passagem de elétrons da banda de valência para a banda de condução (e -BC ), criando lacunas carregadas positivamente (h + BV ) na banda de valência.…”
Section: Introductionunclassified
“…24,27 A aplicação de uma densidade de corrente ou de um potencial anódico constante ao fotoânodo, através de um circuito externo, irá permitir a fotogeração de elétrons que serão continuamente extraídos do fotoânodo, melhorando a eficiência do processo. 23 Os semicondutores TiO 2 e ZnO têm sido extensivamente estudados como fotocatalisadores [15][16][17][18][19]28 e fotoeletrocatalisadores 29-31 na degradação de poluentes orgânicos, devido ao seu baixo custo, alta eficiência, baixa toxicidade e alta estabilidade em meio aquoso. O problema da recombinação do par e -BC /h + BV gerado durante os processos fotocatalíticos é ultrapassado nos processos fotoeletrocatalíticos, pois aqui se induz o aumento do tempo de vida do par e -BC /h + BV , com o consequente aumento da eficiência.…”
Section: Introductionunclassified
“…It could become an integral part of the strategies adopted for reducing environmental pollution through the use of construction materials containing photocatalysts. Photocatalysts induce the formation of strongly oxidizing reagents [16], [17] which can decompose some organic and inorganic substances present in the atmosphere [18]. Photocatalysis is, therefore, an accelerator for oxidization processes that already exist in nature [19].…”
Section: Role Of Photocatalyst In Construction Materialsmentioning
confidence: 99%