Microelectromechanical systems (MEMS) gas sensors have numerous advantages such as compact size, low power consumption, ease of integration, etc., while encountering challenges in sensitivity and high resistance because of their low sintering temperature. This work utilizes the in situ growth of Zeolitic Imidazolate Framework-8 (ZIF-8) followed by its conversion to N-doped ZnO. The results obtained from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicate that the in situ derivation of ZIF-8 facilitates the adhesion of ZnO particles, forming an island-like structure and significantly reducing the interfaces between these particles. Furthermore, powder X-ray diffraction (XRD) analysis, elemental mapping, and X-ray photoelectron spectroscopy (XPS) analysis confirm the conversion of ZIF-8 to ZnO, the successful incorporation of N atoms into the ZnO lattice, and the creation of more oxygen vacancies. The ZIF-8-derived N-doped ZnO/MEMS sensor (ZIF (3)-ZnO/MEMS) exhibits remarkable gas sensitivity for ethanol detection. At an operating temperature of 290 °C, it delivers a substantial response value of 80 towards 25 ppm ethanol, a 13-fold enhancement compared with pristine ZnO/MEMS sensors. The sensor also exhibits an ultra-low theoretical detection limit of 11.5 ppb to ethanol, showcasing its excellent selectivity. The enhanced performance is attributed to the incorporation of N-doped ZnO, which generates abundant oxygen vacancies on the sensor’s surface, leading to enhanced interaction with ethanol molecules. Additionally, a substantial two-order-of-magnitude decrease in the resistance of the gas-sensitive film is observed. Overall, this study provides valuable insights into the design and fabrication strategies applicable to high-performance MEMS gas sensors in a broader range of gas sensing.