Chemiluminescent (CL) reactions are powerful analytical tools and are present in commercially available everyday objects such as glow sticks. Herein, the photons generated by chemiluminescence are exploited to induce covalent bond breakage and formation, using a chemically generated photonic field at ambient temperature through space as energy transducer. Remarkably, the generated photons enable both the cleavage of species generating radicals as well as the execution of [2 + 2] cycloadditions, demonstrating that disparate types of reactions can be triggered. The herein-presented photochemical concept establishes the field of CL-induced photochemistry, which is poised to enable photochemical transformations in situations where physical light sources, such as lamps, LEDs, and lasers cannot be employed, including in biological environments.