Having control over an entity or even an entire process is arguably the ultimate demonstration of its understanding and it will enable its potential to be fully exploited. With this in mind, chemists have not only been creating and optimizing a myriad of different catalysts for most (relevant) chemical reactions over the past decades, but have recently started to implement controlling elements into the catalyst design. These incorporated gates operate upon exposure to suitable control stimuli, and light represents perhaps the scientifically and technologically most attractive stimulus. In principle, irradiation can thereby induce activity and selectivity in a given catalyst system with high spatial and temporal control, leading to an overall localization and amplification of an optical signal and translation into chemical action. While nature has developed and utilized this concept, in particular in the processes of vision and photomovement, such artificial photocontrolled catalyst systems offer unique opportunities and have high potential for future applications. In this Review, we outline the general concept of light-gated catalysis based on photocaged and also photoswitchable systems, and discuss relevant examples of the past and recent literature.