The electron flux oscillations in photo-detachment of a non-collinear tri-atomic anion have been studied by taking each atom of the system as a coherent source of detached-electron wave. These electron waves traversing along three different trajectories result in a quantum interference. An analytical expression of detached-electron flux is evaluated for various detached-electron energies and for different geometrical shapes of the system. The results show that the electron flux distributions exhibit molecular shape-induced oscillatory structures. These oscillations are explained using the semiclassical closed-orbit theory; the outgoing electron waves produced from one center are propagated in the vicinity of the sources at other centers. It is also observed that in a particular case our non-collinear tri-atomic system reduces to the collinear tri-atomic system recently published.